Rainbow Matchings and Rainbow Connectedness

نویسنده

  • Alexey Pokrovskiy
چکیده

Aharoni and Berger conjectured that every collection of n matchings of size n+1 in a bipartite graph contains a rainbow matching of size n. This conjecture is related to several old conjectures of Ryser, Brualdi, and Stein about transversals in Latin squares. There have been many recent partial results about the Aharoni-Berger Conjecture. The conjecture is known to hold when the matchings are much larger than n + 1. The best bound is currently due to Aharoni, Kotlar, and Ziv who proved the conjecture when the matchings are of size at least 3n/2 + 1. When the matchings are all edge-disjoint and perfect, the best result follows from a theorem of Häggkvist and Johansson which implies the conjecture when the matchings have size at least n+ o(n). In this paper we show that the conjecture is true when the matchings have size n + o(n) and are all edge-disjoint (but not necessarily perfect). We also give an alternative argument to prove the conjecture when the matchings have size at least φn+ o(n) where φ ≈ 1.618 is the Golden Ratio. Our proofs involve studying connectedness in coloured, directed graphs. The notion of connectedness that we introduce is new, and perhaps of independent in-

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Rainbow matchings and connectedness of coloured graphs

Aharoni and Berger conjectured that every bipartite graph which is the union of n matchings of size n + 1 contains a rainbow matching of size n. This conjecture is a generalization of several old conjectures of Ryser, Brualdi, and Stein about transversals in Latin squares. When the matchings are all edge-disjoint and perfect, an approximate version of this conjecture follows from a theorem of H...

متن کامل

Abstract—alexey Pokrovskiy

Alexey Pokrovskiy Aharoni and Berger conjectured [1] that every bipartite graph which is the union of n matchings of size n + 1 contains a rainbow matching of size n. This conjecture is related to several old conjectures of Ryser, Brualdi, and Stein about transversals in Latin squares. There have been many recent partial results about the Aharoni-Berger Conjecture. When the matchings have size ...

متن کامل

On rainbow matchings in bipartite graphs

We present recent results regarding rainbow matchings in bipartite graphs. Using topological methods we address a known conjecture of Stein and show that if Kn,n is partitioned into n sets of size n, then a partial rainbow matching of size 2n/3 exists. We generalize a result of Cameron and Wanless and show that for any n matchings of size n in a bipartite graph with 2n vertices there exists a f...

متن کامل

An Improved Bound on the Sizes of Matchings Guaranteeing a Rainbow Matching

A conjecture by Aharoni and Berger states that every family of n matchings of size n + 1 in a bipartite multigraph contains a rainbow matching of size n. In this paper we prove that matching sizes of ( 3 2 + o(1) ) n suffice to guarantee such a rainbow matching, which is asymptotically the same bound as the best-known one in the case where we only aim to find a rainbow matching of size n − 1. T...

متن کامل

Rainbow Matchings in Properly Edge Colored Graphs

Let G be a properly edge colored graph. A rainbow matching of G is a matching in which no two edges have the same color. Let δ denote the minimum degree of G. We show that if |V (G)| ≥ 8δ 5 , then G has a rainbow matching of size at least ⌊ 5 ⌋. We also prove that if G is a properly colored triangle-free graph, then G has a rainbow matching of size at least ⌊ 3 ⌋.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Electr. J. Comb.

دوره 24  شماره 

صفحات  -

تاریخ انتشار 2017